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A Model for Polyelectrolytes
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We have solved a polymerizing version of the mean spherical approximation
(MSA) for polyelectrolytes. The polyelectrolytes are modeled as tangentially
bonded hard-sphere segments interacting via the Coulombic potential in a con-
tinuous medium with dielectric constant. Analytical solutions for ther-
modynamic properties and radial distribution functions at contact are obtained
for some specific systems (negatively charged chains and counterions) studied in
the literature via computer simulations, with which good agreement is found for
the osmotic pressure.

KEY WORDS: Polyelectrolyte; integral equation theory; mean spherical
approximation.

1. INTRODUCTION

The combination of long range Coulombic forces with the constraints of
chain connectivity results in the unique and fascinating behavior of
polyelectrolytes while also presenting a serious challenge to their study.(1)

Nevertheless a number of different statistical mechanical methods have
been applied to the study of polyelectrolytes.

Liquid state theories which have been used to treat both chain
molecules and electrolytes include the Percus�Yevick, (2) Hypernetted
chain(3) and MSA theories for monomers, (4) dimers(5) and longer chains.(6)

In particular Blum and coworkers(6) have provided a general theoretical
framework which provides for the formation of chains consisting of
segments of different size and charge, although no specific results for ther-
modynamic properties are presented. The formalism followed in this work
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is based largely on that presented by Kalyuzhnyi and Stell(12) and may be
considered as a particular case of the general formalism of Blum and
coworkers.

The theoretical framework employed in this work to model chain for-
mation is the powerful multi-density Ornstein�Zernike (MDOZ) developed
by Wertheim(7) and Baxter(8) details of which can be found in those works.

It is also appropriate to mention here the work of Stell and coworkers
in connection with the cavity correlation function(9) which applies
polymerizing potentials involving segments with multiple bonding sites to
form chains. In addition concepts from chemical association coupled with
various integral equation theories have been employed.(10) A number of
systems have been studied by this group, (11) notably that examined by
Kalyuzhnyi and Stell(12) which provides a general framework and much
notation for this work.

Finally, mention should be made of the use of perturbation theories to
predict the thermodynamic properties of some polyelectrolyte systems, (13)

results which agree well with available simulation data.(14)

In this paper we shall provide a theoretical framework in which we
briefly provide a general solution for the MSA model of polyelectrolytes
followed by a more detailed solution for a specific case (fully charged
negative chain and counterions of equal diameter and equal and opposite
charge with no added salt). We show some results for selected ther-
modynamic and structural properties followed by concluding remarks.

2. THEORETICAL FRAMEWORK

The solution of the specific systems considered here is based on the
generalized model of equal sized hard-sphere segments possessing different
charges and short-ranged sticky interactions. More detail can be found in
the work of Kalyuzhnyi and Stell(12) and von Solms and Chiew.(15)

The segment pair potential is given generally as:

Uab(12)=UHS(r)+UC
ab(r)+:

KL

Uab
KL(12) (1)

where a and b are the segment indices (in our case either + or & only, i.e.,
no uncharged segments are included in the analysis, although the inclusion
of neutral species either in the form of added salts or as neutral chain
segments is quite straightforward). K and L are the segment site indices for
short range (bonding) attraction and take on the values A or B. Thus each
segment has two sites at which bonding can occur. By specifying which
sites on which segments may form bonds we can specify the creation of
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specific types of chains. A further point is that the relative location of the
two sites on a segment is not specified so that flexible chains can form,
within the constraints of steric hindrance. UHS(r) is the hard-sphere poten-
tial and Uab

KL(12) is the short-range sticky potential defined through its
Mayer function as:

f ab
KL=Kab

KL $(1&r) (2)

where as usual f=e&;U&1 and Kab
KL is the strength of the sticky interac-

tion. UC
ab(r) is the Coulombic potential and is given by

UC
ab(r)=

e2ZaZb

=r
(3)

The problem now entails solution of the MDOZ equation which in Fourier
space is

H� (k)=C� (k)+C� (k) _H� (k) (4)

Here, H� (k) and C� (k) are Fourier transforms of the following matrices for
the untransformed functions h(r), c(r) and the density elements _:

hab(r)=\
hab

00(r)
hab

A0(r)
hab

B0(r)
hab

10(r)

hab
0A(r)

hab
AA(r)

hab
BA(r)

hab
1A(r)

hab
0B(r)

hab
AB(r)

hab
BB(r)

hab
1B(r)

hab
01 (r)

hab
A1 (r)

hab
B1 (r)

hab
11 (r)+

cab=\
cab

00(r)
cab

A0(r)
cab

B0(r)
cab

10(r)

cab
0A(r)

cab
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cab
BA(r)

cab
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cab
11 (r)+

and
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11
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0

_a
B

0
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0

0

_a
A

_a
0

0
0

_a
0

0
0
0 +

In the above definitions the superscripts a and b refer to species of
individual particles (+ or &) and the subscripts 0, A, B or 1 refer to the
bonded state of the particle (0 refers to an unbonded particle, A to a par-
ticle bonded only at site A, B to a particle bonded only at site B and 1 to
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a particle bonded at both sites). The MDOZ equation is solved with the
use of appropriate closures. We use the PY-MSA like closure:(5)

hab
:;(r)=&$:0$;0 for r<1

(5)
cab

:;=&$:0$;0;UC
ab(r)+(1&$:0)(1&$;0) Bab

:; $(r&1) for r>1

where the segment diameter is equal to unity. The parameters Bab
:; are stick-

iness parameters and can be related to the values Kab
KL via the method of

cluster integrals. The contact values for the various partial radial distribu-
tion functions are also found this way. The detailed analysis will not be
presented here but can be found in our previous work.(15) An excellent dis-
cussion of the use of these methods can be found in the works of Stell(16)

and McQuarrie.(17) In order only to allow the formation of linear
negatively charged chains and counterions, we specify that bonding only
occurs between unlike sites of negative segments. We could also form linear
chains by allowing bonding only between unlike segments, but employ the
conventional prescription used previously.(18) Hence the only non-zero
stickiness constants are K&&

AB and K&&
BA which are equal.

The relationship between the densities in terms of the stickiness
parameters in the Wertheim(7) multi-density formalism for our system is
given by(18)

\&
A =4?\&

0 (B&&
AB _&

A +B&&
A1 _&

0 )

\&
B =4?\&

0 (B&&
BA _&

B +B&&
B1 _&

0 ) (6)

\&
1 =\&

0 \\&
A \&

B

(\&
0 )2 +4?(B&&

11 _&
0 +B&&

1A _&
B +B&&

1B _&
A )+

We define the average chain length m for the negatively charged chains as
the ratio of number of segments to number of chains (analogous to the
number average molecular weight for polymers). In terms of the
parameters of our system we then have:

m#
_&

1

_&
K

(7)

from which we have

_&
K =

\T

2m
(8)
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We shall make the additional assumption that

_&
K

_&
0

=m (9)

which is similar to the so-called ideal-chain assumption of Chang and San-
dler(18) for neutral chains. We can now rewrite the density relations (6)

B&&
KK $ +

B&&
K1

m
=

m(m&1)
12' (10)

B&&
11 = &2mB&&

1K

where K and K $ represent either A or B.
The MDOZ equation (4) can be written in terms of Baxter q-functions

as(8, 12, 15)

&rcab
:;(r)=[qab

:;(r)]$&2? :
c

:
#$

_c
#$

�
�r |

�

0
qca

#:(t) qcb
$;(r+t) dt (11)

&rhab
:;(r)=[qab

:;(r)]$&2? :
c

:
#$

_c
#$ |

�

0
qac

:#(t)(r&t) hcb
$;( |r&t| ) dt (12)

Solution of these equations gives

qab
:;(r)= 1

2$0;aa
:r2+($0;ba

:+|a
: Jb

;) r+cab
:; (13)

where the parameters Ja
: account for long-range forces

Jab
:;=|

�

1&
thab

:;(t) dt (14)

Ja
:=:

c

:
#$

_c
0#Jca

#: Zc (15)

and the parameters |a
: arise from the electroneutrality condition

:
c

:
#$

|c
#_c

#$ |c
$=

4?;e2

=
(16)

aa
: and ba

: arise from conditions inside the core and the constants cab
:; which

incorporate both hard-core and long-range parameters can be solved using
the discontinuities in the q-functions at r=1:

1
2

$0;aa
:+$0;ba

:+cab
:;= &

1
2?

|a
:Zb $0;&|a

: Jb
;+(1&$0:)(1&$0;) Bab

:;

(17)
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Detailed solution of (11) at r=0 gives the following two equations(12, 15)

ba
:$:0+|a

:Ja
:+? :

c

:
#$

_c
#$ cca

#:cca
$:

=(1&$:0) ? :
c

:
#$

_c
#$(1&$#0)(1&$$0) Bca

#:Bca
$: (18)

ba
:+bb

0 $:0+|a
:Jb

0+|b
0Ja

:+2? :
c

:
#$

_c
#$cca

#: ccb
$0

+(1&$#0) :
c

:
#$

_c
#$ Zc |c

$ Bca
#:=0 (19)

3. SOLUTION FOR FULLY CHARGED CHAIN AND
COUNTERIONS

The density relations (10) are already written for the specific system
under consideration. We now solve for the specific parameters of our
problem. Setting :=0, a= & and :=0, a= + in Eq. (18) and combining
the resulting equations, after a good deal of algebra we obtain the simple
relations:

|1=&2m|K
(20)

J1=&2mJK

Setting :=K and :=1 in Eq. (18) and combining the results, after
similarly tedious algebra we obtain the expression

m(m&1)
12' \|0&

|K

m +=0 (21)

from which we have either m=1 (the monomer case) or for general m

|K=m|0 (22)

We can substitute these values into Eq. (16) to solve for |0 in terms of the
known physical parameters of the system. The result is

|2
0=

:2

2\T
(23)
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This solution differs from the monomer solution(4) only by a factor of two.
The value of J0 is then

J0=
&1&2|0 \T+- 1+4|0 \T

4?|0\T
(24)

Setting :=K or :=1 and b= + or b= & in (19) and using (10) we
obtain for the remaining charge parameter JK :

JK=m \ 1
2?

+J0+ (25)

and the stickiness parameters:

B&&
KK $ =

m(m&1)
12'

&
m2

6'(1+2?J0) \
|0(1&')

?
&1+ (26)

B&&
K1 =

m3

6'(1+2?J0) \
|0(1&')

?
&1+ (27)

B&&
1K =&

m3

6'(1+2?J0)
(28)

B&&
11 =

m4

3'(1+2?J0)
(29)

The hard-sphere parameters are found to be:

a0=
1+2'

(1&')2 (30)

b0=&
3'

2(1&')2 (31)

aK=&
m&1

2(1&')
(32)

bK=
m&1

4(1&')
(33)

a1=b1=0 (34)

We have tacitly assumed the conventions: a+
0 =a&

0 =a0 ; b+
0 =b&

0 =b0 ;
|+

0 =&|&
0 =|0 ; J+

0 =&J&
0 =J0 ; |K=|&

K ; |1=|&
1 ; JK=J&

K and
J1=J&

1 .
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4. THERMODYNAMIC AND STRUCTURAL PROPERTIES

Although there are a number of ways of deriving thermodynamic
properties(19) from knowledge of the radial distribution function, a success-
ful and simple method for electrolytes is the energy route(4) which however
suffers from the drawback of requiring the properties of a reference
system��in our case a hard-sphere chain�hard-sphere mixture.(2, 15, 20)

The electrostatic energy 2E given by:(4)

2E=2?\ :
ij

XiXj |
�

0
gijuijr2 dr (35)

Using Eqs. (14) and (15) we have:

2E=2? \e2

= + :
i#

Zi_ i
0#J i

# (36)

Expanding the summation gives:

2E=2? \e2

= + \T _J0&
JK

m
&

J1

2m2& (37)

which simplifies to

2E=2? \e2

= + \TJ0 (38)

the Helmholtz energy

;2Aelec=
1

2? _&
}

- 2
&

}2

2
+

1
6

(1+2 - 2 })3�2&
1
6& (39)

and the osmotic pressure:

;2Pelec

\T
=

1
4?\T _

}

- 2
+

}

- 2
(1+2 - 2 })1�2&

1
3

(1+2 - 2 })3�2+
1
3& (40)

where

}2=
4?;e2

=
\T (41)

Osmotic pressure vs density results are shown in Fig. 1 for chain lengths
of 16, 32 and 64 and compared with the simulation data of Stevens and
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Fig. 1. Osmotic pressure as a function of density for 16 (squares), 32 (diamonds) and
64-mer (triangles) chains and counterions. The Bjerrum length *B=0.833. The lines are
predictions from the theory and the points are simulation data of Stevens and Kremer.(14)

Fig. 2. Osmotic coefficient as a function of density for 32-mer chains at different Bjerrum
lengths. The lines are predictions from the theory and the open squares are simulation data
of Stevens and Kremer.(14)
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Kremer.(14) Osmotic coefficient data for 32-mers at different Bjerrum
lengths are shown in Fig. 2. As can be seen, the theory is in good agree-
ment with the simulation and captures the correct low- and high density
scaling behavior. Finally, we give the results for the overall (total) radial
distribution functions at contact:

g++(1+)=
1+'�2
(1&')2+|0J0 (42)

g&+(1+)=g+&(1+)=
1+'�2
(1&')2&

m&1
2m(1&')

&|0J0 (43)

g&&(1+)=
1+'�2
(1&')2&

m&1
m(1&')

+|0J0+\m&1
m +

2 1
12'

&\m&1
m + |0(1&')

6'?(1+2?J0)
(44)

5. CONCLUSIONS

We have solved analytically the mean spherical approximation for the
thermodynamic properties and contact radial distribution functions of
polyelectrolytes and counterions in solution, where the polyelectrolyte is
considered to be a chain of hard spheres each carrying a unit negative
charge and counterions are equal sized hard spheres carrying equal and
opposite charge. Analytical expressions for the electrostatic internal energy,
Helmholtz energy, and osmotic pressure are given. The osmotic pressure
predicted by the theory agrees well with available simulation results. Con-
tact values are found for the three radial distribution functions.
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